

A Novel HGD-CFD Framework for Efficient Simulation of Granular Flow Dynamics

Jiahuan Li¹, Alistair Gillespie², Matthew Cleary³, Itai Einav⁴ and Benjy Marks⁵

1. PhD Student

2. Principal Advisor

Rio Tinto, Brisbane, Australia

3. Professor of Mechanical Engineering

4. Professor, School of Civil Engineering

5. Senior Lecturer in Geomechanics

The University of Sydney, Sydney, Australia

Corresponding author: benjy.marks@sydney.edu.au

<https://doi.org/10.71659/icsoba2025-aa031>

Abstract

DOWNLOAD

FULL PAPER

Computational modelling of granular flows is vital for optimising and controlling material handling in the alumina industry. Moreover, understanding how particle size distributions evolve over time provides key insights for enhancing process performance. However, existing discrete particle methods are limited by the number of particles that can be simulated. To address this gap, we introduce a novel numerical method that couples the stochastic Heterarchical Granular Dynamics (HGD) model with Computational Fluid Dynamics (CFD). The HGD component tracks the particles and their interactions, while the CFD component models the fluid flow. Coupling the two components allows to capture particle-fluid interactions. This coupled approach overcomes the computational limitations of traditional discrete particle methods while accurately tracking the population of particle sizes in space and time. Validation against benchmark cases demonstrates the method's effectiveness in capturing the dynamic behaviour of granular flows in fluids, offering a promising tool for advancing process design and optimisation.

Keywords: Granular flow, Size distribution evolution, Computational fluid dynamics.

1. Introduction

Bulk solids handling is a common and persistent challenge in alumina operations. Irregular discharge from storage silos often causes variations in particle size, which leads to uneven feed quality and affects downstream processing [1]. For example, size segregation in precipitators can produce slurries that are either too fine to filter efficiently or too coarse to dissolve properly in the smelter. When flow problems occur, operators often rely on basic measures, such as hitting equipment, using aeration without a clear strategy, or lowering conveyor speeds, to keep things moving, even if it reduces productivity. Even short periods of unplanned downtime in alumina refining can result in significant financial losses and reduced energy efficiency in the smelter. As a result, plant managers demand tools that reduce guesswork, improve consistency, and help make better use of the equipment they already have.

In practice, engineers often rely on two main types of models:

- **Continuum models** use empirical formulas or simplified equations, such as the Beverloo equation for discharge or the Ergun equation for pressure drop. Some advanced versions apply probability balance equations to describe bulk flow behaviour. These models are fast and convenient but overlook important details like changes in particle size, buildup on equipment walls, or shifting flow regimes. As a result, they struggle to predict how a small change in particle size distribution (PSD) will affect mass flow or stability [2].

- **Particle-based models** simulate every particle and its interactions with others and with walls. This approach captures fine-scale physics but is extremely computationally intensive. Simulating large-scale industrial systems with these methods often requires significant computational resources and time. To reduce this burden, engineers sometimes simplify the problem setup, but such approximations can eliminate the very size effects that are critical to the process [3].

The objective of this paper is to present the developed HGD-CFD framework and validate its accuracy and robustness using two lab-scale scenarios. The validation results aim to establish confidence in the framework as a reliable and efficient tool for simulating granular flow dynamics in fluid environments.

2. A Middle Path: The Novel HGD-CFD Framework

To bridge the gap between overly simple models and overly detailed ones, we introduce a new simulation approach called the heterarchical granular dynamics/computational fluid dynamics (HGD-CFD) framework. This method, further developed from the original HGD formulation [4], combines fluid simulation with a stochastic model of particle movement, offering a balance between speed and accuracy. The approach is built on two main ideas:

- **Probabilistic particle transport on a grid:** Instead of tracking every particle, the HGD model divides the domain into grid cells. Within each cell, particles are treated as groups that move based on stochastic rules informed by kinetic theory. Each cell keeps track of key information like how much solid is present, the average particle size, and how much size variation there is.
- **Coupled fluid-solid interaction:** A CFD solver calculates the fluid forces, such as drag, buoyancy, and lift, acting on each cell. These forces influence particle motion, and, in return, the moving solids affect the fluid flow. This two-way exchange captures important effects like how particles expand when flowing or how fluid helps promote flow.

The result is a solver that runs much faster than particle-based models while still capturing accuracy at the outlet level. A typical alumina silo may contain on the order of 10^{17} particles, which is far beyond the limits of discrete simulations, where current high-performance computing resources typically allow simulations of up to 10^7 – 10^9 particles. In contrast, the HGD-CFD framework can simulate a full 1000 t silo overnight (8–10 hours) on a standard 32-core workstation, delivering next-morning results that support real-time decision-making in plant operations. This corresponds to approximately 10^{17} particles, depending on particle size, which is several orders of magnitude beyond the practical limits of Discrete Element Method (DEM) - based models.

2.1 Delivering Value in Alumina Flow Management

The developed model offers practical value across several aspects of alumina flow management, including improving flow consistency, supporting product quality, and guiding infrastructure decisions.

- **Reducing discharge variability:** At the refinery, small variations in feed rate to the calciner were known to impact downstream process stability and overall efficiency, including fuel consumption and product quality consistency. Our developed model was used to explore how different aeration ring placements might influence flow variability, supporting decision-making for potential operational improvements.
- **Improving smelter product quality:** Fluctuations in particle size distribution can influence smelter chemistry and energy efficiency. Our developed model was used to simulate particle transport through precipitation tanks and silos, helping to understand

dense granular suspensions in fluid environments. The insights gained here provide a foundation for more advanced simulations and practical applications for industrial-scale scenarios.

4. Conclusion

This study introduces and validates a coupled HGD-CFD framework for simulating granular flows in fluid environments, with a particular focus on scenarios relevant to alumina storage and handling. The model captures key interphase interactions, including drag and buoyancy, while avoiding the computational demands of fully particle resolved simulations.

Two validation cases were presented to build confidence in the model's implementation. The first involved a single particle settling under gravity, confirming the correct treatment of basic fluid-solid coupling in a low Reynolds-number regime. The second used a lab-scale silo filled with a bi-dispersed particle mixture to test the model's ability to reproduce complex behaviours such as segregation and fluid-assisted particle transport in dense suspensions.

Although this work is limited to lab-scale validation, the results suggest that the framework has strong potential to support industrial decision-making. For example, it may be used to evaluate how design changes influence flow consistency, assess the impact of particle size distribution on discharge behaviour, or test operational strategies before implementation. Its computational efficiency makes it suitable for running large parameter sweeps or exploring multiple scenarios rapidly, providing engineers with actionable insights without the need for costly or time-consuming trials.

Future developments may extend the model's capabilities to include additional physics such as frictional rheology, particle breakage, or cohesive forces. Moreover, as the current validation is limited to lab-scale scenarios, future work will focus on demonstrating the model's performance in full-scale industrial systems. This would further enhance its value as a practical simulation tool for optimising granular material processing in real plant environments.

5. References

1. S. Lindsay, Alumina properties and challenges ahead, *Proceedings of 41st International ICSOBA Conference*, Dubai, UAE, 5–9 November 2023, 154–160.
2. J. Murray et al., Continuum representation of a continuous size distribution of particles engaged in rapid granular flow, *Physics of Fluids*, Vol. 24, No. 8, (2012).
3. P. W. Cleary, Large scale industrial dem modelling, *Engineering Computations*, Vol. 21, No. 4, (2004), 169–204.
4. B. Marks, S. Athani, and I. Einav, Heterarchical granular dynamics, *arXiv preprint arXiv:2501.07867*, 2025.